GPU Accelerated Randomized Singular Value Decomposition and Its Application in Image Compression

نویسندگان

  • Hao Ji
  • Yaohang Li
چکیده

In this paper, we present a GPU-accelerated implementation of randomized Singular Value Decomposition (SVD) algorithm on a large matrix to rapidly approximate the top-k dominating singular values and correspondent singular vectors. The fundamental idea of randomized SVD is to condense a large matrix into a small dense matrix by random sampling while keeping the important information. Then performing traditional deterministic SVD on this small dense matrix reveals the topk dominating singular values/singular vectors approximation. The randomized SVD algorithm is suitable for the GPU architecture; however, our study finds that the key bottleneck lies on the SVD computation of the small matrix. Our solution is to modify the randomized SVD algorithm by applying SVD to a derived small square matrix instead as well as a hybrid GPU-CPU scheme. Our GPU-accelerated randomized SVD implementation is around 6~7 times faster than the corresponding CPU version. Our experimental results demonstrate that the GPU-accelerated randomized SVD implementation can be effectively used in image compression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Value Decomposition based Steganography Technique for JPEG2000 Compressed Images

In this paper, a steganography technique for JPEG2000 compressed images using singular value decomposition in wavelet transform domain is proposed. In this technique, DWT is applied on the cover image to get wavelet coefficients and SVD is applied on these wavelet coefficients to get the singular values. Then secret data is embedded into these singular values using scaling factor. Different com...

متن کامل

Batched QR and SVD Algorithms on GPUs with Applications in Hierarchical Matrix Compression

We present high performance implementations of the QR and the singular value decomposition of a batch of small matrices hosted on the GPU with applications in the compression of hierarchical matrices. The one-sided Jacobi algorithm is used for its simplicity and inherent parallelism as a building block for the SVD of low rank blocks using randomized methods. We implement multiple kernels based ...

متن کامل

High-Performance Out-of-core Block Randomized Singular Value Decomposition on GPU

Fast computation of singular value decomposition (SVD) is of great interest in various machine learning tasks. Recently, SVD methods based on randomized linear algebra have shown significant speedup in this regime. This paper attempts to further accelerate the computation by harnessing a modern computing architecture, namely graphics processing unit (GPU), with the goal of processing large-scal...

متن کامل

Performance Analysis of SVD and SPIHT Algorithm for Image Compression Application

This paper deals with performance evaluation of well known image compression algorithm i.e. wavelet based image compression Set Partition in hierarchical Tree (SPIHT) and decomposition algorithm known as Singular Value Decomposition (SVD). Due to multi resolution nature of wavelet transforms, SPIHT provides better image compression at higher compression ratio. The techniques are implemented in ...

متن کامل

Singular Value Decomposition in Image Noise Filtering and Reconstruction

The Singular Value Decomposition (SVD) has many applications in image processing. The SVD can be used to restore a corrupted image by separating significant information from the noise in the image data set. This thesis outlines broad applications that address current problems in digital image processing. In conjunction with SVD filtering, image compression using the SVD is discussed, including ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014